题目
过点M(2,4)向圆C:(x-1)^2+(y+3)^2=1引两条切线,切点分别为P,Q.(1)直线PQ的方程 (2)切点弦PQ的长
提问时间:2020-10-24
答案
圆心C(1,-3)到M(2,4)的距离=√[(1-2)^2+(-3-4)^2]= √(50)
在直角三角形MPC和MQC中,半径=1
lMPl=lMQl=√(50-1)=7
∴我们要找的是圆上到点M距离为7的点
∴设切点坐标为(x,y)列方程组:
1.(x-2)^2+(y-4)^2=7^2
2.(x-1)^2+(y+3)^2=1
2式减1式,得2x+14y+38=0,即x+7y+19=0,
x,y的解的轨迹是一条直线.将最后的方程解完最后将会得到两个解,即是两个切点,而这两个切点坐标都满足x+7y+19=0,所以x+7y+19=0就是所要求的直线.
下面求出直线x+7y+19=0被圆C:(x-1)^2+(y+3)^2=1截得的弦长即是PQ的长.
圆心C(1,-3)到直线x+7y+19=0的距离为:
d=|1-21+19|/√(1^2+7^2)=√2/10,
圆的半径R=1,
圆的半径、圆心到直线的距离、弦长一半构成直角三角形,
所以弦长一半为√[1^2-(√2/10)^2]= 7√2/10,
∴PQ的长为7√2/5.
在直角三角形MPC和MQC中,半径=1
lMPl=lMQl=√(50-1)=7
∴我们要找的是圆上到点M距离为7的点
∴设切点坐标为(x,y)列方程组:
1.(x-2)^2+(y-4)^2=7^2
2.(x-1)^2+(y+3)^2=1
2式减1式,得2x+14y+38=0,即x+7y+19=0,
x,y的解的轨迹是一条直线.将最后的方程解完最后将会得到两个解,即是两个切点,而这两个切点坐标都满足x+7y+19=0,所以x+7y+19=0就是所要求的直线.
下面求出直线x+7y+19=0被圆C:(x-1)^2+(y+3)^2=1截得的弦长即是PQ的长.
圆心C(1,-3)到直线x+7y+19=0的距离为:
d=|1-21+19|/√(1^2+7^2)=√2/10,
圆的半径R=1,
圆的半径、圆心到直线的距离、弦长一半构成直角三角形,
所以弦长一半为√[1^2-(√2/10)^2]= 7√2/10,
∴PQ的长为7√2/5.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1若(x+a)(x+2)=x的平方-5x+b求ab的值
- 2p=pgh,h是什么?物体的还是液体的
- 3现规定一种运算:a◎b=a^2+ab,则x^2◎y说表示的整式分解因式的结果是什么
- 4Please listen and number the nice pictures.
- 5已知∠AOE内有一射线OC,射线OB将∠AOC分得∠AOB和∠BOC的度数比为1:2,射线OD将∠COE分得∠COD和∠DOE的度数比是2:1,若∠AOE=120°,求∠BOD 没图,所以各位童鞋们多
- 6《把我的心脏带回祖国》中课文写了肖邦作文的哪几件事情?
- 7酒后驾驶的英语作文
- 8need doing 什么意思?
- 9分数单位是六分之一,最小带分数是( ).
- 10x的一半是用字母表达式应表示为?