当前位置: > 已知圆C过点(1,3),且在x轴上的截距之和为2,在y轴上截距之积为-2,求圆的方程...
题目
已知圆C过点(1,3),且在x轴上的截距之和为2,在y轴上截距之积为-2,求圆的方程

提问时间:2020-10-24

答案
设圆C方程为x^2+y^+Dx+Ey+F=0 (D^2+E^2-4F>0)
令y=0,则:x^2+Dx+F=0
在x轴上的截距之和为2,说明方程x^2+Dx+F=0的两根之和为2,
即由韦达定理-D=2,得D=-2
令x=0得:y^2+Ey+F=0
在y轴上截距之积为-2,说明方程y^2+Ey+F=0的两根之积为-2
即由韦达定理得F=-2
所以方程为x^2+y^2-2x+Ey-2=0 (*)
又因为圆C过点(1,3),故将(1,3)代入(*)方程得:
1+9-2+3E-2=0,得到E=-2
所以最终圆C的方程是x^2+y^2-2x-2y-2=0,
也就是(x-1)^2+(y-1)^2=4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.