题目
解方程1/(x+1)(x+2)+1/(x+2)(x+3)+...+1/(x+99)(x+100)+1/x+100=1999/2000
提问时间:2020-10-23
答案
1/(x+1)(x+2)+1/(x+2)(x+3)+...+1/(x+99)(x+100)
=1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)+.+1/(x+99)-1/(x+100)
=1/(x+1)-1/(x+100)
1/(x+1)(x+2)+1/(x+2)(x+3)+...+1/(x+99)(x+100)+1/x+100=1/(x+1)
1/(x+1)=1999/2000
x=1/1999
=1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)+.+1/(x+99)-1/(x+100)
=1/(x+1)-1/(x+100)
1/(x+1)(x+2)+1/(x+2)(x+3)+...+1/(x+99)(x+100)+1/x+100=1/(x+1)
1/(x+1)=1999/2000
x=1/1999
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点