当前位置: > 如图,在三角形ABC中,D室BA上一点,BD=AC,点E,F分别是BC,DA的中点,EF和CA的延长线相交于G,...
题目
如图,在三角形ABC中,D室BA上一点,BD=AC,点E,F分别是BC,DA的中点,EF和CA的延长线相交于G,
求证三角形AFG是等腰三角形

提问时间:2020-10-23

答案
延长BA至H,使AH=BD.
∵BD=AH、DF=FA,∴BD+DF=FA+AH,∴BF=FH,又BE=EC,
∴EF是△BCH中过BC、BH的中位线,∴EF∥CH,∴∠BFE=∠AHC,而∠BFE=∠AFG,
∴∠AFG=∠AHC.······①
∵EF∥CH,∴EG∥CH,∴∠ACH=∠AGF.······②
∵AH=BD、BD=AC,∴AH=AC,∴∠ACH=∠AHC.······③
由①、②、③,得:∠AFG=∠AGF,∴△AFG是以FG为底边的等腰三角形.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.