当前位置: > 曲线xe^y+xy+y=1,在x=0处的切线方程,怎么才能把e的y次方给导掉...
题目
曲线xe^y+xy+y=1,在x=0处的切线方程,怎么才能把e的y次方给导掉

提问时间:2020-10-23

答案
应用隐函数求导,两边对X求导即可:
e^y+xe^y y'+y+xy'+y'=0
y'=-(y+e^y)/(xe^y+x+1)
x=0时,代入原方程得:y=1
因此有:y'(0)=-(1+e^1)/(0+0+1)=-(1+e)
切线为:y=-(1+e)x+1
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.