题目
已知函数f(x)=(x3-6x2+3x+t)ex,t∈R.
(1)若函数y=f(x)依次在x=a,x=b,x=c(a<b<c)处取到极值.
①求t的取值范围;
②若a+c=2b2,求t的值.
(2)若存在实数t∈[0,2],使对任意的x∈[1,m],不等式f(x)≤x恒成立.求正整数m的最大值.
(1)若函数y=f(x)依次在x=a,x=b,x=c(a<b<c)处取到极值.
①求t的取值范围;
②若a+c=2b2,求t的值.
(2)若存在实数t∈[0,2],使对任意的x∈[1,m],不等式f(x)≤x恒成立.求正整数m的最大值.
提问时间:2020-10-23
答案
(1)①f'(x)=(3x2-12x+3)ex+(x3-6x2+3x+t)ex=(x3-3x2-9x+t+3)ex
∵f(x)有3个极值点,
∴x3-3x2-9x+t+3=0有3个根a,b,c.
令g(x)=x3-3x2-9x+t+3,g'(x)=3x2-6x-9=3(x+1)(x-3),
g(x)在(-∞,-1),(3,+∞)上递增,(-1,3)上递减.
∵g(x)有3个零点∴
∴-8<t<24.
②∵a,b,c是f(x)的三个极值点,
∴x3-3x2-9x+t+3=(x-a)(x-b)(x-c)=x3-(a+b+c)x2+(ab+bc+ac)x-abc
∴
∴b=1或-
(舍∵b∈(-1,3))
∴
∴t=8
(2)不等式f(x)≤x,即(x3-6x2+3x+t)ex≤x,即t≤xe-x-x3+6x2-3x.
转化为存在实数t∈[0,2],使对任意的x∈[1,m],
不等式t≤xe-x-x3+6x2-3x恒成立.
即不等式0≤xe-x-x3+6x2-3x在x∈[1,m]上恒成立.
即不等式0≤e-x-x2+6x-3在x∈[1,m]上恒成立.
设φ(x)=e-x-x2+6x-3,则φ'(x)=-e-x-2x+6.
设r(x)=φ'(x)=-e-x-2x+6,则r'(x)=e-x-2,因为1≤x≤m,有r'(x)<0.
故r(x)在区间[1,m]上是减函数.
又r(1)=4-e-1>0,r(2)=2-e-2>0,r(3)=-e-3<0
故存在x0∈(2,3),使得r(x0)=φ'(x0)=0.
当1≤x<x0时,有φ'(x)>0,当x>x0时,有φ'(x)<0.
从而y=φ(x)在区间[1,x0]上递增,在区间[x0,+∞)上递减.
又φ(1)=e-1+4>0,φ(2)=e-2+5>0,φ(3)=e-3+6>0,φ(4)=e-4+5>0,φ(5)=e-5+2>0,φ(6)=e-6-3<0.
所以当1≤x≤5时,恒有φ(x)>0;
当x≥6时,恒有φ(x)<0;
故使命题成立的正整数m的最大值为5.
∵f(x)有3个极值点,
∴x3-3x2-9x+t+3=0有3个根a,b,c.
令g(x)=x3-3x2-9x+t+3,g'(x)=3x2-6x-9=3(x+1)(x-3),
g(x)在(-∞,-1),(3,+∞)上递增,(-1,3)上递减.
∵g(x)有3个零点∴
|
②∵a,b,c是f(x)的三个极值点,
∴x3-3x2-9x+t+3=(x-a)(x-b)(x-c)=x3-(a+b+c)x2+(ab+bc+ac)x-abc
∴
|
∴b=1或-
3 |
2 |
∴
|
(2)不等式f(x)≤x,即(x3-6x2+3x+t)ex≤x,即t≤xe-x-x3+6x2-3x.
转化为存在实数t∈[0,2],使对任意的x∈[1,m],
不等式t≤xe-x-x3+6x2-3x恒成立.
即不等式0≤xe-x-x3+6x2-3x在x∈[1,m]上恒成立.
即不等式0≤e-x-x2+6x-3在x∈[1,m]上恒成立.
设φ(x)=e-x-x2+6x-3,则φ'(x)=-e-x-2x+6.
设r(x)=φ'(x)=-e-x-2x+6,则r'(x)=e-x-2,因为1≤x≤m,有r'(x)<0.
故r(x)在区间[1,m]上是减函数.
又r(1)=4-e-1>0,r(2)=2-e-2>0,r(3)=-e-3<0
故存在x0∈(2,3),使得r(x0)=φ'(x0)=0.
当1≤x<x0时,有φ'(x)>0,当x>x0时,有φ'(x)<0.
从而y=φ(x)在区间[1,x0]上递增,在区间[x0,+∞)上递减.
又φ(1)=e-1+4>0,φ(2)=e-2+5>0,φ(3)=e-3+6>0,φ(4)=e-4+5>0,φ(5)=e-5+2>0,φ(6)=e-6-3<0.
所以当1≤x≤5时,恒有φ(x)>0;
当x≥6时,恒有φ(x)<0;
故使命题成立的正整数m的最大值为5.
(1)①根据极值点是导函数的根,据方程的根是相应函数的零点,结合函数的单调性写出满足的不等式解出t的范围,②将三个极值点代入导函数得到方程,左右两边各项的对应系数相等,列出方程组,解出t值.
(2)先将存在实数t∈[0,2],使不等式f(x)≤x恒成立转化为将t看成自变量,f(x)的最小值)≤x;再构造函数,通过导数求函数的单调性,求函数的最值,求出m的范围.
(2)先将存在实数t∈[0,2],使不等式f(x)≤x恒成立转化为将t看成自变量,f(x)的最小值)≤x;再构造函数,通过导数求函数的单调性,求函数的最值,求出m的范围.
利用导数研究函数的极值;不等式的综合.
本题考查利用导数求函数的极值、极值点是导函数的根、解决不等式恒成立常用的方法是构造函数利用导数求函数的最值.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1有一块长方形的地,长500米,宽400米,如果把它画在一张图纸上,长画10厘米,那么宽应
- 2今年爸爸的年龄是儿子的4倍,20年后,爸爸的年龄是儿子的2倍,爸爸今年多大?
- 3用英文介绍青岛.简单一点就可以了.
- 4地亩数的换算
- 5200名学生排成四路纵队,四个人一排,已知每两排之间都相隔1米,这支队伍长多少米
- 6长城的长度
- 7the lady dancing as a hobby in her sixties,and she is really good at it now
- 8毕业在即,六年级某班为纪念师生情谊,班委决花800元班费买两种不同单价的留念册,分别给50位同学和10位任课老师每人一本留作纪念.其中送给任课老师的留念册的单价比给同学的单价多
- 9《猴子笑了》 200字
- 10已知方程x平方减x减1等于0的一个根为求a的立方加a的平方减3a加1的值
热门考点