题目
当x趋于0时,求√1+tanx-√1+sinx/x*(1-cosx)的极限
提问时间:2020-10-22
答案
楼上做法太复杂了,本题用有理化来做
lim[x→0] [√(1+tanx) - √(1+sinx)]/[x(1-cosx)]
分母先用等价无穷小代换
=lim[x→0] 2[√(1+tanx) - √(1+sinx)]/x³
分子有理化
=lim[x→0] 2[√(1+tanx) - √(1+sinx)][√(1+tanx) + √(1+sinx)] / x³[√(1+tanx) + √(1+sinx)]
=lim[x→0] 2(tanx-sinx) / x³[√(1+tanx) + √(1+sinx)]
=lim[x→0] 2tanx(1-cosx) / x³[√(1+tanx) + √(1+sinx)]
分子等价无穷小代换
=lim[x→0] x³ / x³[√(1+tanx) + √(1+sinx)]
=1/2
若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
lim[x→0] [√(1+tanx) - √(1+sinx)]/[x(1-cosx)]
分母先用等价无穷小代换
=lim[x→0] 2[√(1+tanx) - √(1+sinx)]/x³
分子有理化
=lim[x→0] 2[√(1+tanx) - √(1+sinx)][√(1+tanx) + √(1+sinx)] / x³[√(1+tanx) + √(1+sinx)]
=lim[x→0] 2(tanx-sinx) / x³[√(1+tanx) + √(1+sinx)]
=lim[x→0] 2tanx(1-cosx) / x³[√(1+tanx) + √(1+sinx)]
分子等价无穷小代换
=lim[x→0] x³ / x³[√(1+tanx) + √(1+sinx)]
=1/2
若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点