当前位置: > 设A是n阶方阵,如有非零矩阵B使AB=0,证明|A|=0....
题目
设A是n阶方阵,如有非零矩阵B使AB=0,证明|A|=0.

提问时间:2020-10-22

答案
用反证法.若R(A) =N,则A可逆.A^(-1)[AB] = A^(-1)*0 = 0,又A^(-1)[AB] = B ,因此,B=0.与B不等于0矛盾.故,R(A)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.