当前位置: > 已知△ABC的面积为23,BC=5,A=60°,则△ABC的周长是_....
题目
已知△ABC的面积为2
3
,BC=5,A=60°,则△ABC的周长是______.

提问时间:2020-10-22

答案
∵△ABC的面积为2
3
,A=60°,
1
2
AC•ABsin60°=2
3
,解得AC•AB=8
根据余弦定理,得BC2=AC2+AB2-2AC•ABcos60°
即AC2+AB2-AC•AB=(AC+AB)2-3AC•AB=BC2=25
∴(AC+AB)2-24=25,可得(AC+AB)2=49,得AC+AB=7
因此,△ABC的周长AB+AC+BC=7+5=12.
故答案为:12.
由△ABC的面积为2
3
,根据正弦定理的面积公式结合A=60°算出AC•AB=8.再由余弦定理BC2=AC2+AB2-2AC•ABcosA的式子,化简整理得到(AC+AB)2-3AC•AB=25,从而解出AC+AB=7,由此即可解出△ABC的周长.

正弦定理.

本题给出三角形ABC的面积,在已知一边和一角的情况下求三角形的周长.着重考查了正余弦定理和三角形面积公式等知识,考查了配方的数学思想,属于中档题.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.