当前位置: > 若函数f(x)=mx^2-(m-4)x+1在原点左侧至少有一个零点,求实数m的取值范围...
题目
若函数f(x)=mx^2-(m-4)x+1在原点左侧至少有一个零点,求实数m的取值范围
答案是 (负无穷,6-2√5]
为什么6-2√5可以取到呢。

提问时间:2020-10-22

答案
零点即f(x)=0
①当m=0时,f(x)=4x+1=0,解得:x= -1/4 ,m=0成立.
②当m≠0时,f(x)=0转换为一元二次方程解的问题.
原点左侧至少有一个零点,即Δ≥0且较小根小于零.
即:[-(m-4)]^2-4m≥0 (Δ≥0)
(m-4)/2m-√Δ/2m<0 ( 两个根中较小根取减号)
解得:m≤6-2√5且m≠0
综合①②可得:m≤6-2√5
另:你提出关于为什么可以取到6-2√5,我们可以看到取等号时Δ=0,此时函数f(x)与x轴有且只有一个交点,且这个交点是满足条件的.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.