当前位置: > x=(t^2-2)(t+1) y=(2t)(t+1) 求dydx...
题目
x=(t^2-2)\(t+1) y=(2t)\(t+1) 求dy\dx
x=(t^2-2)\(t+1)
y=(2t)\(t+1)
求dy\dx

提问时间:2020-10-22

答案
dy/dt=((2t)'(t+1)-(2t)(t+1)')/(t+1)^2=(2(t+1)-2t)/(t+1)^2=2/(t+1)^2
dx/dt=((t^2-2)'(t+1)-(t^2-2)(t+1)')/(t+1)^2=(2t(t+1)-(t^2-2))/(t+1)^2=(t^2+2t+2)/(t+1)^2
所以dy/dx=(dy/dt)/(dx/dt)=2/(t^2+2t+2)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.