当前位置: > 数列{an}(a为正整数)中,a1=a,an+1是函数Fn(x)=1/3x^3-1/2(3an+n^2)x^2+3n^2anx的极小值点...
题目
数列{an}(a为正整数)中,a1=a,an+1是函数Fn(x)=1/3x^3-1/2(3an+n^2)x^2+3n^2anx的极小值点
.(1)当a=0时,求通项an (2)是否存在a,使数列{an}是等比数列若存在,求a的取值范围;若不存在,请说明理由

提问时间:2020-10-21

答案
先对Fn进行一阶求导得Fn'=x^2-(3an+n^2)x+3n^2an=(x-3an)(x-n^2).二阶求导得到Fn''=2x-3an-n^2.由于an+1为极小值,所以需要Fn'(an+1)=0和Fn''(an+1)>0.由这两个条件可得an+1=(3an+n^2)/2和an+1=3an或者n^2.这意味着...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.