当前位置: > 若f(x)的定义域关于原点对称,则F(x)=f(x)+f(-x)为偶函数,F(x)=f(x) -f(-x)为奇函数 怎么理解...
题目
若f(x)的定义域关于原点对称,则F(x)=f(x)+f(-x)为偶函数,F(x)=f(x) -f(-x)为奇函数 怎么理解

提问时间:2020-10-21

答案
用定义去验证.
1.令 F(x)=f(x)+f(-x),则 F(-x)=f(-x)+f(x)=F(x),所以 F(x)是偶函数;
2.令 G(x)=f(x)-f(-x),则 G(-x)=f(-x)-f(x)=-[f(x)-f(-x)]=-G(x),所以 G(x)是奇函数.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.