题目
已知:△ABC和△ADE均为等腰直角三角形,∠ABC=∠ADE=90°,AB=BC,AD=DE,按图1放置,使点E在BC上,取CE的中点F,连接DF、BF.
(1)探索DF、BF的数量关系和位置关系,并证明;
(2)将图1中△ADE绕A点顺时针旋转45°,再连接CE,取CE的中点F(如图2),问(1)中的结论是否仍然成立?证明你的结论;
(3)将图1中△ADE绕A点转动任意角度(旋转角在0°到90°之间),再连接CE,取CE的中点F(如图3),问(1)中的结论是否仍然成立?证明你的结论.
(1)探索DF、BF的数量关系和位置关系,并证明;
(2)将图1中△ADE绕A点顺时针旋转45°,再连接CE,取CE的中点F(如图2),问(1)中的结论是否仍然成立?证明你的结论;
(3)将图1中△ADE绕A点转动任意角度(旋转角在0°到90°之间),再连接CE,取CE的中点F(如图3),问(1)中的结论是否仍然成立?证明你的结论.
提问时间:2020-10-21
答案
(1)DF=BF且DF⊥BF.(1分)
证明:如图1:
∵∠ABC=∠ADE=90°,AB=BC,AD=DE,
∴∠CDE=90°,∠AED=∠ACB=45°,
∵F为CE的中点,
∴DF=EF=CF=BF,
∴DF=BF;(2分)
∴∠DFE=2∠DCF,∠BFE=2∠BCF,
∴∠EFD+∠EFB=2∠DCB=90°,
即:∠DFB=90°,
∴DF⊥BF.(3分)
(2)仍然成立.
证明:如图2,延长DF交BC于点G,
∵∠ABC=∠ADE=90°,
∴DE∥BC,
∴∠DEF=∠GCF,
又∵EF=CF,∠DFE=∠GFC,
∴△DEF≌△GCF,
∴DE=CG,DF=FG,(4分)
∵AD=DE,AB=BC,
∴AD=CG,
∴BD=BG,(5分)
又∵∠ABC=90°,
∴DF=BF且DF⊥BF.(6分)
(3)仍然成立.证明:如图3,延长BF至点G,使FG=BF,连接DB、DG、GE,
在△EFG与△CFB中,
∵
,
∴△EFG≌△CFB,
∴EG=CB,∠EGF=∠CBF,
∴EG∥CB,
∵AB=BC,AB⊥CB,
∴EG=AB,EG⊥AB,
∵∠ADE=90°,EG⊥AB,
又∵∠AED=∠DAE,
∴∠DAB=∠DEG,
在△DAB和△DEG中,
∵
∴△DAB≌△DEG(SAS),
∴DG=DB,∠ADB=∠EDG,(7分)
∴∠BDG=∠ADE=90°,
∴△BGD为等腰直角三角形,
∴DF=BF且DF⊥BF.(8分)
证明:如图1:
∵∠ABC=∠ADE=90°,AB=BC,AD=DE,
∴∠CDE=90°,∠AED=∠ACB=45°,
∵F为CE的中点,
∴DF=EF=CF=BF,
∴DF=BF;(2分)
∴∠DFE=2∠DCF,∠BFE=2∠BCF,
∴∠EFD+∠EFB=2∠DCB=90°,
即:∠DFB=90°,
∴DF⊥BF.(3分)
(2)仍然成立.
证明:如图2,延长DF交BC于点G,
∵∠ABC=∠ADE=90°,
∴DE∥BC,
∴∠DEF=∠GCF,
又∵EF=CF,∠DFE=∠GFC,
∴△DEF≌△GCF,
∴DE=CG,DF=FG,(4分)
∵AD=DE,AB=BC,
∴AD=CG,
∴BD=BG,(5分)
又∵∠ABC=90°,
∴DF=BF且DF⊥BF.(6分)
(3)仍然成立.证明:如图3,延长BF至点G,使FG=BF,连接DB、DG、GE,
在△EFG与△CFB中,
∵
|
∴△EFG≌△CFB,
∴EG=CB,∠EGF=∠CBF,
∴EG∥CB,
∵AB=BC,AB⊥CB,
∴EG=AB,EG⊥AB,
∵∠ADE=90°,EG⊥AB,
又∵∠AED=∠DAE,
∴∠DAB=∠DEG,
在△DAB和△DEG中,
∵
|
∴△DAB≌△DEG(SAS),
∴DG=DB,∠ADB=∠EDG,(7分)
∴∠BDG=∠ADE=90°,
∴△BGD为等腰直角三角形,
∴DF=BF且DF⊥BF.(8分)
(1)根据“直角三角形斜边上的中线等于斜边的一半”可知DF=BF,根据∠DFE=2∠DCF,∠BFE=2∠BCF,得到∠EFD+∠EFB=2∠DCB=90°,DF⊥BF.
(2)延长DF交BC于点G,先证明△DEF≌△GCF,得到DE=CG,DF=FG,根据AD=DE,AB=BC,得到BD=BG又因为∠ABC=90°,所以DF=BF且DF⊥BF.
(3)延长BF至点G,使FG=BF,连接DB,DG,GE,可证明△EFG≌△CFB,得到EG=CB,∠EGF=∠CBF,继而求得△DAB≌△DEG,得到DG=DB,∠ADB=∠EDG,所以∠BDG=∠ADE=90°,可得DF=BF且DF⊥BF.
(2)延长DF交BC于点G,先证明△DEF≌△GCF,得到DE=CG,DF=FG,根据AD=DE,AB=BC,得到BD=BG又因为∠ABC=90°,所以DF=BF且DF⊥BF.
(3)延长BF至点G,使FG=BF,连接DB,DG,GE,可证明△EFG≌△CFB,得到EG=CB,∠EGF=∠CBF,继而求得△DAB≌△DEG,得到DG=DB,∠ADB=∠EDG,所以∠BDG=∠ADE=90°,可得DF=BF且DF⊥BF.
全等三角形的判定与性质;等腰直角三角形;旋转的性质.
主要考查了旋转的性质,等腰三角形和全等三角形的判定.要掌握等腰三角形和全等三角形的性质及其判定定理并会灵活应用是解题的关键.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1没有人能够懂我的心 英语要怎么写?
- 2有对称中心的函数一定是周期函数?!
- 3一个数的5倍加上30的3分之2,和是100,求这个数?(用方程解)
- 4最大公因数8,最小公倍数是48,求这两个数?
- 5One day,a giant peach changed the life of James.翻译
- 6北方地区自然地理特征
- 7连词成句:live,your,in,does,yillage,grandmother,the.
- 8(2009•西安一模)焰火“脚印”“笑脸”“五环”,让北京奥运会开幕式更加辉煌、浪漫,这与高中化学中“焰色反应”知识相关.下列说法中正确的是( ) A.非金属单质燃烧时火焰均
- 9用长度分别为2、3、4、5、6(单位:cm)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为( ) A.85cm2 B.610cm2 C.355cm2 D.20cm
- 10太阳在一天中会向南北方向运动吗?
热门考点
- 1某年级学生人数在200—300之间,若3人一组余1人,若5人一组余2人,若7人一组余3人.问该年级有多少人?
- 2月是怎么出现月食的
- 3可持续发展有何意义?
- 4已知圆c过点 1 0 且圆心在x轴的正半轴上 直线x+y-1=0被圆c截得弦长为2根号2 求圆得标准
- 5kg/L是什么
- 6在加法算式中,第一个加数,第二个加数与和,这三个数相加的得数是320,第一个加数:第二个加数=2:3.第二个加数是_,第一个加数是_.
- 7有两种金属组成的混合物13g,投入足量的稀硫酸中,充分反应后,产生1g氢气,则该金属混合物组成可能是
- 8解一道方程8x+7y+5(12-x-y)=80
- 9如何将12345这5个数用+ - * /这4个运算符算来等于22,并且每个数字和每个运算符只能用1次
- 10一个数的平方根是2m+1和m-4,则这个数是_.