当前位置: > 已知函数f(x)=a^x(x<0)和(a-3)x+4a(x≥0)满足对任意x1≠x2,都有(f(x1)-f(x2))/(x1-x2)<0...
题目
已知函数f(x)=a^x(x<0)和(a-3)x+4a(x≥0)满足对任意x1≠x2,都有(f(x1)-f(x2))/(x1-x2)<0
这题不用详细解答了 我只想知道为什么在函数的分段处即x=0时a^x>(a-3)x+4a

提问时间:2020-10-21

答案
由f(x1)-f(x2)/(x1-x2)<0
当x1<x2时,就有:x1-x2<0
所以:f(x1)-f(x2)>0
可知函数f(x)在定义域R内为减函数
① 当x<0时,f(x)=a^x
因为f'(x)=a^xlna<0 而 a^x>0 则 lna<0
则有 0<a<1
② 当x≥0时,f(x)=(a-3)x+4a
因为f'(x)=a-3<0 则有a<3
因为在R上f(x)均为减函数
所以:当x→0时,a^x≥(a-3)x+4a
lim(x→0-)f(x)=lim(x→0-)a^x=1
lim(x→0+)f(x)=lim(x→0-)(a-3)x+4a=4a
所以,1≥4a 则,a≤1/4
所以有 0<a≤1/4
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.