题目
如果奇函数f(x)在区间[3,7]上是增函数且最大值为5,那么f(x)在区间[-7,-3]上是( )
A. 减函数且最小值是-5
B. 增函数且最大值是-5
C. 减函数且最大值是-5
D. 增函数且最小值是-5
A. 减函数且最小值是-5
B. 增函数且最大值是-5
C. 减函数且最大值是-5
D. 增函数且最小值是-5
提问时间:2020-10-21
答案
∵奇函数y=f(x)在区间[3,7]上是增函数,∴f(x)在区间[-7,-3]上也是增函数
∵函数y=f(x)在区间[3,7]上是增函数,最大值为5,
∴当3≤x≤7时,[f(x)]max=f(7)=5,
即任意的x∈[3,7],f(x)≤f(7)恒成立.
又∵x∈[-7,-3]时,-x∈[3,7],得f(-x)≤f(7)恒成立,
∴根据函数为奇函数,得-f(x)≤f(7)即f(x)≥f(-7),
∵f(-7)=-f(7)=-5,
∴对任意的x∈[-7,-3],f(x)≥f(-7)=-5恒成立,
因此,f(x)在区间[-7,-3]上为增函数且有最小值f(-7)=-5.
故选:D
∵函数y=f(x)在区间[3,7]上是增函数,最大值为5,
∴当3≤x≤7时,[f(x)]max=f(7)=5,
即任意的x∈[3,7],f(x)≤f(7)恒成立.
又∵x∈[-7,-3]时,-x∈[3,7],得f(-x)≤f(7)恒成立,
∴根据函数为奇函数,得-f(x)≤f(7)即f(x)≥f(-7),
∵f(-7)=-f(7)=-5,
∴对任意的x∈[-7,-3],f(x)≥f(-7)=-5恒成立,
因此,f(x)在区间[-7,-3]上为增函数且有最小值f(-7)=-5.
故选:D
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1We must learn how to chang these "problems" into "challenges".
- 2已知x=1时,2ax的平方+bx的值为3,则当x=2时,ax的平方=bx的值为
- 3in fornt of ,in the fornt of ,be afraid of
- 4大伙儿把袖子举起来就是一片云;大伙甩一把汗就是一阵雨;街上的行人肩膀擦着肩膀脚尖碰着脚跟
- 5He took his car to the park just now.同意句He 一个空 his car to the park just now.
- 6He is a _____ ( know ) singer .
- 7函数f(x)=X—1/x对任意xE[1,+oo),f(mx)+mf(x)
- 8先化简,再求值 (1-m分之1)÷m²+2m+1分之m²-1,其中m=2
- 9写出我20岁了了,几个排比句..
- 10感恩老师的作文 要感人 600到800字