题目
n为大于1的整数,证明;n的9次方-n的3次方可被504整除
提问时间:2020-10-20
答案
n^9- n^3=n^3(n^6- 1)=n^3(n^3-1)(n^3+1)……(1)式
1、 当n是偶数时,n^3 能被8整除,(1)式能被8整除.
当n是奇数时,(n^3-1) 和 (n^3+1) 是两个相邻的偶数,其中一个必能被4整除,即(n^3-1) (n^3+1) 能被8整除,(1)式能被8整除.
因此对于任意整数n,(1)式均能被8整除.
2、 当n能被7整除时,n^3 能被7整除,(1)式能被7整除.
设n=7k+1时,n^3-1=(7k+1)^3-1=(7k)^3+3×(7k)^2+3×(7k)+1-1=(7k)^3+3×(7k)^2+3×(7k)能被7整除.
设n=7k+2时,n^3-1=(7k+2)^3-1=(7k)^3+3×(7k)^2×2+3×(7k)×4+8-1=(7k)^3+6×(7k)^2+12×(7k)+7能被7整除.
设n=7k+4时,n^3-1=(7k+4)^3-1=(7k)^3+3×(7k)^4×2+3×(7k)×16+64-1=(7k)^3+12×(7k)^2+48×(7k)+63能被7整除.
当n除以7余1,2,4时,n^3-1能被7整除,(1)式能被7整除.
设n=7k+3时,n^3+1=(7k+3)^3-1=(7k)^3+3×(7k)^2×3+3×(7k)×9+27+1=(7k)^3+9×(7k)^2+27×(7k)+28能被7整除.
设n=7k+5时,n^3+1=(7k+5)^3-1=(7k)^3+3×(7k)^2×5+3×(7k)×25+125+1=(7k)^3+15×(7k)^2+75×(7k)+126能被7整除.
设n=7k+6时,n^3+1=(7k+6)^3-1=(7k)^3+3×(7k)^2×6+3×(7k)×36+216+1=(7k)^3+18×(7k)^2+108×(7k)+217能被7整除.
当n除以7余3,5,6时,n^3+1能被7整除,(1)式能被7整除.
因此对于任意整数n,(1)式均能被7整除.
3、 以此类推,
当n除以9余0,3,6时,n^3能被9整除,(1)式能被9整除.
当n除以9余1,4,7时,n^3-1能被9整除,(1)式能被9整除.
当n除以9余2,5,8时,n^3+1能被9整除,(1)式能被9整除.
因此对于任意整数n,(1)式均能被9整除.
4、 因此对于任意整数n,(1)式均能被7、8、9整除.
因为7,8,9没有公约数,7×8×9=504
所以n^9- n^3可被504整除
1、 当n是偶数时,n^3 能被8整除,(1)式能被8整除.
当n是奇数时,(n^3-1) 和 (n^3+1) 是两个相邻的偶数,其中一个必能被4整除,即(n^3-1) (n^3+1) 能被8整除,(1)式能被8整除.
因此对于任意整数n,(1)式均能被8整除.
2、 当n能被7整除时,n^3 能被7整除,(1)式能被7整除.
设n=7k+1时,n^3-1=(7k+1)^3-1=(7k)^3+3×(7k)^2+3×(7k)+1-1=(7k)^3+3×(7k)^2+3×(7k)能被7整除.
设n=7k+2时,n^3-1=(7k+2)^3-1=(7k)^3+3×(7k)^2×2+3×(7k)×4+8-1=(7k)^3+6×(7k)^2+12×(7k)+7能被7整除.
设n=7k+4时,n^3-1=(7k+4)^3-1=(7k)^3+3×(7k)^4×2+3×(7k)×16+64-1=(7k)^3+12×(7k)^2+48×(7k)+63能被7整除.
当n除以7余1,2,4时,n^3-1能被7整除,(1)式能被7整除.
设n=7k+3时,n^3+1=(7k+3)^3-1=(7k)^3+3×(7k)^2×3+3×(7k)×9+27+1=(7k)^3+9×(7k)^2+27×(7k)+28能被7整除.
设n=7k+5时,n^3+1=(7k+5)^3-1=(7k)^3+3×(7k)^2×5+3×(7k)×25+125+1=(7k)^3+15×(7k)^2+75×(7k)+126能被7整除.
设n=7k+6时,n^3+1=(7k+6)^3-1=(7k)^3+3×(7k)^2×6+3×(7k)×36+216+1=(7k)^3+18×(7k)^2+108×(7k)+217能被7整除.
当n除以7余3,5,6时,n^3+1能被7整除,(1)式能被7整除.
因此对于任意整数n,(1)式均能被7整除.
3、 以此类推,
当n除以9余0,3,6时,n^3能被9整除,(1)式能被9整除.
当n除以9余1,4,7时,n^3-1能被9整除,(1)式能被9整除.
当n除以9余2,5,8时,n^3+1能被9整除,(1)式能被9整除.
因此对于任意整数n,(1)式均能被9整除.
4、 因此对于任意整数n,(1)式均能被7、8、9整除.
因为7,8,9没有公约数,7×8×9=504
所以n^9- n^3可被504整除
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 12(x一2)十3(2x一1)=9(x一1)
- 2有一个正方体,棱长是3分米,如果按下图把它切成棱长是1分米的小正方体,这些小正方体的表面积的和是多少?
- 3怎样有效率的学习英语
- 4is not the arm to the old couple,i give
- 55分之4表示 还表示
- 6直线l在两坐标轴上的截距相等,且p(4,3)到直线l的距离为三倍根号二,求直线的方程.
- 7天下谁人不识君的前句是什么?
- 8怎么分上声,入声,平声,去声?什么是"发凡","题跋"?
- 9已知在10只产品中有2只次品,在其中取两次,每次取一只,作不放回抽样,则一只是正品,一只是次品的概率是
- 10若关于X的二次三项式 x²+2mx+4-m是一个完全平方,求实数m的值