当前位置: > 点到直线距离公式证明方法...
题目
点到直线距离公式证明方法

提问时间:2020-10-20

答案
设点A(m.n)到直线y=kx+b的距离
首先,求过点A且与直线y=kx+b垂直的直线方程
过点A且与直线y=kx+b垂直的直线方程设为y=-x/k+c
【因为两直线垂直,其斜率乘积为-1,即k1k2=-1】
所以有n=-m/k+b===>b=n+m/k=(nk+m)/k
所以过A点且垂直y=kx+b的直线方程为
y=-x/k+(nk+m)/k
其次,求这两条直线的交点坐标,即联解这两个直线方程
直线y=kx+b与直线y=-x/k+(nk+m)/k的交点坐标
kx+b=-x/k+(nk+m)/k
解出x,然后解出y即是交点坐标,假设为B点(p,q)
最后,根据两点距离公式求出点A到y=kx+b的距离
|AB|=√[(m-p)²+(n-q)²]
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.