题目
已知微分方程为u(t)=Ri(t)+Ldi(t)\dt+e(t),求电流i(t)的拉氏式
提问时间:2020-10-20
答案
∵对应的齐次方程是LdI(t)/dt+RI(t)=0,
==>此齐次方程的特征方程是Lx+R=0
==>特征根是x=-R/L
∴此齐次方程的通解是I(t)=Ce^(-Rt/L) (C是积分常数)
于是,设原方程的通解是I(t)=C(t)e^(-Rt/L) (C(t)表示关于t的函数)
∵dI(t)/dt=C'(t)e^(-Rt/L)-(RC(t)/L)e^(-Rt/L)
代入原方程,得RI(t)+L[C'(t)e^(-Rt/L)-(RC(t)/L)e^(-Rt/L)]+e(t)=u(t)
==>RC(t)e^(-Rt/L)+LC'(t)e^(-Rt/L)-RC(t)e^(-Rt/L)]=u(t)-e(t)
==>LC'(t)e^(-Rt/L)=u(t)-e(t)
==>C'(t)=[(u(t)-e(t))/L]e^(Rt/L)
==>C(t)=C+∫[(u(t)-e(t))/L]e^(Rt/L)dt (C是积分常数)
∴I(t)={C+∫[(u(t)-e(t))/L]e^(Rt/L)dt}e^(-Rt/L)
故 原方程的通解是I(t)={C+∫[(u(t)-e(t))/L]e^(Rt/L)dt}e^(-Rt/L) (C是积分常数).
==>此齐次方程的特征方程是Lx+R=0
==>特征根是x=-R/L
∴此齐次方程的通解是I(t)=Ce^(-Rt/L) (C是积分常数)
于是,设原方程的通解是I(t)=C(t)e^(-Rt/L) (C(t)表示关于t的函数)
∵dI(t)/dt=C'(t)e^(-Rt/L)-(RC(t)/L)e^(-Rt/L)
代入原方程,得RI(t)+L[C'(t)e^(-Rt/L)-(RC(t)/L)e^(-Rt/L)]+e(t)=u(t)
==>RC(t)e^(-Rt/L)+LC'(t)e^(-Rt/L)-RC(t)e^(-Rt/L)]=u(t)-e(t)
==>LC'(t)e^(-Rt/L)=u(t)-e(t)
==>C'(t)=[(u(t)-e(t))/L]e^(Rt/L)
==>C(t)=C+∫[(u(t)-e(t))/L]e^(Rt/L)dt (C是积分常数)
∴I(t)={C+∫[(u(t)-e(t))/L]e^(Rt/L)dt}e^(-Rt/L)
故 原方程的通解是I(t)={C+∫[(u(t)-e(t))/L]e^(Rt/L)dt}e^(-Rt/L) (C是积分常数).
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1英语作文 内容 张玉22岁中等个头有长长的头发圆脸戴眼镜她爱好运动经常穿一套运动服
- 2work hard是副词结构的短语,那么hard work是什么结构的短语
- 3She never stop to make me believe that I could do anything with my life that I wanted if I only tri
- 4曲则全,枉则直,洼则盈,敝则新,少则多,多则惑.是以圣人抱一为天下式.不自见,故明;不自是,故彰;不算伐,故有功;不自矜,故长.
- 5知道弧高=300 弦长=1500,弧长等于多少
- 6在英国超市里买东西,如果结账的时候你是用信用卡付钱,收银员会问你"Cash back?".
- 7调整至可对应的订单量 英语怎么说
- 8检验血液标本溶血的原因有哪些啊?
- 9虚拟语气填空
- 10为了检测人躺着和站立时身体长度是否有差异,选用哪种尺最合适