当前位置: > 已知:如图,在正方形ABCD中,AD=1,P、Q分别为AD、BC上两点,且AP=CQ,连接AQ、BP交于点E,EF平行BC交PQ于F,AP、BQ分别为方程x2-mx+n=0的两根. (1)求m的值; ...
题目
已知:如图,在正方形ABCD中,AD=1,P、Q分别为AD、BC上两点,且AP=CQ,连接AQ、BP交于点E,EF平行BC交PQ于F,AP、BQ分别为方程x2-mx+n=0的两根.
(1)求m的值;
(2)试用AP、BQ表示EF;
(3)若S△PQE=
1
8

提问时间:2020-10-20

答案
(1)∵AP=QC,AP+BQ=QC+BQ=BC=1,
又∵AP、BQ分别为方程x2-mx+n=0的两根,
所以有AP+BQ=m,AP•BQ=n,
∴AP+BQ=m=1.
即m=1.
(2)∵EF∥AP,
EF
AP
EQ
AQ

又∵AP∥BQ,
EQ
AE
BQ
AP

EQ
AE+EQ
BQ
AP+BQ
EQ
AQ
BQ
AP+BQ

EF
AP
BQ
AP+BQ
,即:EF=
AP•BQ
AP+BQ

∵AP+BQ=1,
∴EF=AP•BQ.
(3)连接QD,则EP∥QD
得:S△AQD=
1
2

且S△AEP:S△AQD=AP2:AD2=AP2:1=AP2
∴S△AEP=AP2•S△AQD=
1
2
AP2
∴S△PQE:S△AEP=EQ:AE,
1
8
1
2
AP2=EQ:AE=BQ:AP,
∴AP•BQ=
1
4
,即:n=
1
4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.