当前位置: > 设A是正交矩阵,证明A^*也是正交矩阵...
题目
设A是正交矩阵,证明A^*也是正交矩阵

提问时间:2020-10-20

答案
由于A为正交矩阵,所以|A|^2=1,A^-1也是正交矩阵,((A^-1)^T(A^-1)=(A^T)^-1(A^-1)=(AA^T)^-1=E^-1=E),所以(A*)^TA*=(|A|A^-1)^T(|A|A^-1)=|A|^2(A^-1)^T(A^-1)=E,因此A*也是正交矩阵.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.