当前位置: > 在三角形ABC中,若(a+b)(sinB-sinA)=a(sinB),且cos2C+cosC=1-cos(A-B),问abc的形状...
题目
在三角形ABC中,若(a+b)(sinB-sinA)=a(sinB),且cos2C+cosC=1-cos(A-B),问abc的形状

提问时间:2020-10-20

答案
由正弦定理易得
(sinB+sinA)/sinA=(b+a)/a
(a+b)/a=sinB/(sinB-sinA)
因此sinBsinA=sin^2B-sin^2A-----(1)
cos(A-B)+cos((180-(A+B))=1-(1-2sin^2C)
化简得sinAsinB=sin^2C-----------(2)
联立等式(1)(2)得
sin^2B-sin^2A=sin^2C
sin^2B=sin^2A+sin^2C
即b^2=a^2+c^2
所以是直角三角形
参考资料:baidu
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.