当前位置: > 从1、2、3、…、1988、1989这些自然数中,最多可以取出_个数,使得其中每两个数的差不等于4....
题目
从1、2、3、…、1988、1989这些自然数中,最多可以取出______个数,使得其中每两个数的差不等于4.

提问时间:2020-10-20

答案
把1,2,3…1998,1999这1999个数分成四组公差是4的等差的数列,
1,5,9,13…1983,1987----共497个数;
2,6,10,14…1984,1988----共497个数;
3,7,11,15…1985,1989----共497个数;
4,8,12,16…1982,1986----共496个数;
我们发现:1.四行中每一行中任意相邻两数相差为4,不相邻两数相差不可能是4;
2.而分属不同两行的任意两个数相差不可能为4,因为如果相差为4的话,两数将被归为一行,这显然与事实矛盾;
故我们用这样的方法来选符合规定的数:前三行每隔一个数选一个,每行最多可选249个数;第四行先选4,再隔一个数字选一个,可选出249个,最终得到249×4=996个数.
答:最多可以取996个数,才能使其中每两个数的差不等于4.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.