当前位置: > 已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)<f(1/3)的x的取值范围是...
题目
已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)<f(1/3)的x的取值范围是

提问时间:2020-10-19

答案
因为偶函数f(x)在区间[0,+∞)上单调递增
所以偶函数f(x)在区间(-∞,0)上单调递减
又因为f(2x-1)<f(1/3)
即f(-1/3)<f(2x-1)<f(1/3)
由图得即
-1/3<2x-1<1/3
解得:1/3<x<2/3
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.