题目
如图,在△ABC中,∠ACB=90°,BC的垂直平分线交BC于D,交AB于点E,F在DE上,并且AF=CE.
(1)求证:四边形ACEF是平行四边形;
(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请证明你的结论;
(3)四边形ACEF有可能是矩形吗?为什么?
(1)求证:四边形ACEF是平行四边形;
(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请证明你的结论;
(3)四边形ACEF有可能是矩形吗?为什么?
提问时间:2020-10-19
答案
(1)证明:∵ED是BC的垂直平分线,
∴EB=EC.
∴∠3=∠4.
∵∠ACB=90°,
∴∠2与∠4互余,∠1与∠3互余,
∴∠1=∠2.
∴AE=CE.
又∵AF=CE,
∴△ACE和△EFA都是等腰三角形.
∴AF=AE,
∴∠F=∠5,
∵FD⊥BC,AC⊥BC,
∴AC∥FE.
∴∠1=∠5.
∴∠1=∠2=∠F=∠5,
∴∠AEC=∠EAF.
∴AF∥CE.
∴四边形ACEF是平行四边形.
(2)当∠B=30°时,四边形ACEF是菱形.证明如下:
∵∠B=30°,∠ACB=90°,
∴∠1=∠2=60°.
∴△EAC为等边三角形,
∴AC=EC.
∴平行四边形ACEF是菱形.
(3)四边形ACEF不可能是矩形.理由如下:
由(1)可知,∠2与∠3互余,
∠3≠0°,∴∠2≠90°.
∴四边形ACEF不可能是矩形.
∴EB=EC.
∴∠3=∠4.
∵∠ACB=90°,
∴∠2与∠4互余,∠1与∠3互余,
∴∠1=∠2.
∴AE=CE.
又∵AF=CE,
∴△ACE和△EFA都是等腰三角形.
∴AF=AE,
∴∠F=∠5,
∵FD⊥BC,AC⊥BC,
∴AC∥FE.
∴∠1=∠5.
∴∠1=∠2=∠F=∠5,
∴∠AEC=∠EAF.
∴AF∥CE.
∴四边形ACEF是平行四边形.
(2)当∠B=30°时,四边形ACEF是菱形.证明如下:
∵∠B=30°,∠ACB=90°,
∴∠1=∠2=60°.
∴△EAC为等边三角形,
∴AC=EC.
∴平行四边形ACEF是菱形.
(3)四边形ACEF不可能是矩形.理由如下:
由(1)可知,∠2与∠3互余,
∠3≠0°,∴∠2≠90°.
∴四边形ACEF不可能是矩形.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1△ABC是等边三角形,在AB,BC边上取点E,D,AE=BD,过E作EF‖CD,FE=DC,求证△AGF≌△EA
- 2一种电器,按百分之20的利润定价,然后又按八折出售,结果亏损20元钱,这种电器的成本是多少
- 3已知扇形的半径为4cm,圆心角45°,求扇形的弧长和面积
- 4王大爷养的公鸡比母鸡多300只,公鸡的只数是母鸡的4/1,公鸡母鸡各有多少只 王大爷
- 5受管理幅度和组织层次相互关系影响的组织结构有哪些?
- 6Jim cleaned his room yesterday一般疑问句
- 7大学四年级的时候 英语怎么说
- 8y=x2/(x2-4x+1)x∈[1/3,1] 求值域
- 9“只见树木,不见森林”,“人间重晚晴”,“岁寒知松柏”的含义
- 10I wanted to write a letter just now.So I wanted a pen.(改为同义句)