当前位置: > 在三角形ABC中,如果三内角满足:(sinA)^2 + (sinB)^2 = 5(sinC)^2,求证:sinC≤3/5...
题目
在三角形ABC中,如果三内角满足:(sinA)^2 + (sinB)^2 = 5(sinC)^2,求证:sinC≤3/5

提问时间:2020-10-19

答案
我记得三角形里面有个这样的公式,楼主可以查下,设△ 外接圆半径 为R 则
2R =a /sinA =b /xinB =c/sinC
故题设条件可以转化为
a^2 + b ^2 =5*c^2 >=2ab
∴ 0=4/5 (当且仅当.并且利用了上面的条件),
∴0< C =16/25
结合角C的范围,解上述不等式 0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.