当前位置: > 设n、d都是自然数,且2n^2能被d整除.求证:n^2+d不是完全平方数...
题目
设n、d都是自然数,且2n^2能被d整除.求证:n^2+d不是完全平方数

提问时间:2020-10-19

答案
如果 n^2+d 是完全平方数,则 存在整数m>0,使 n^2+d=m^2
因此 d=m^2-n^2
因为 2n^2=d*k (k为整数)
所以 2n^2=(m^2-n^2)*k
m^2=n^2*(2-k)/k
因此 k=1,m^2=n^2,
从而 d=0,与 d>0 矛盾.
所以 n^2+d 不是完全平方数
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.