当前位置: > 设A为n阶方阵,证明存在一可逆矩阵B及一幂等矩阵C,使A等于BC...
题目
设A为n阶方阵,证明存在一可逆矩阵B及一幂等矩阵C,使A等于BC

提问时间:2020-10-19

答案
幂等矩阵定义是
C^2=C
设A的标准型为F=
E 0
0 0
即可设A=PFQ,其中P,Q可逆,A=PQQ^{-1}FQ,令B=PQ,B可逆,且令C=Q^{-1}FQ,由于F^2=F,所以C^2=C.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.