题目
如图,已知抛物线y=x2+4x+3交x轴于A、B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(-1,0).
(1)求抛物线的对称轴及点A的坐标;
(2)在平面直角坐标系xoy中是否存在点P,与A、B、C三点构成一个平行四边形?若存在,请写出点P的坐标;若不存在,请说明理由;
(3)连接CA与抛物线的对称轴交于点D,在抛物线上是否存在点M,使得直线CM把四边形DEOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由.
(1)求抛物线的对称轴及点A的坐标;
(2)在平面直角坐标系xoy中是否存在点P,与A、B、C三点构成一个平行四边形?若存在,请写出点P的坐标;若不存在,请说明理由;
(3)连接CA与抛物线的对称轴交于点D,在抛物线上是否存在点M,使得直线CM把四边形DEOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由.
提问时间:2020-10-19
答案
(1)①对称轴x=-
=-2;
②当y=0时,有x2+4x+3=0,
解之,得x1=-1,x2=-3,
∴点A的坐标为(-3,0).
(2)满足条件的点P有3个,分别为(-2,3),(2,3),(-4,-3).
(3)存在.
当x=0时,y=x2+4x+3=3
∴点C的坐标为(0,3),
∵DE∥y轴,AO=3,EO=2,AE=1,CO=3,
∴△AED∽△AOC
∴
=
即
=
,
∴DE=1.
∴S梯形DEOC=
(1+3)×2=4,
在OE上找点F,使OF=
,
此时S△COF=
×
×3=2,直线CF把四边形DEOC分成面积相等的两部分,交抛物线于点M.
设直线CM的解析式为y=kx+3,它经过点F(-
,0).
则-
k+3=0,(11分)
解之,得k=
,
∴直线CM的解析式为y=
x+3.
4 |
2 |
②当y=0时,有x2+4x+3=0,
解之,得x1=-1,x2=-3,
∴点A的坐标为(-3,0).
(2)满足条件的点P有3个,分别为(-2,3),(2,3),(-4,-3).
(3)存在.
当x=0时,y=x2+4x+3=3
∴点C的坐标为(0,3),
∵DE∥y轴,AO=3,EO=2,AE=1,CO=3,
∴△AED∽△AOC
∴
AE |
AO |
DE |
CO |
1 |
3 |
DE |
3 |
∴DE=1.
∴S梯形DEOC=
1 |
2 |
在OE上找点F,使OF=
4 |
3 |
此时S△COF=
1 |
2 |
4 |
3 |
设直线CM的解析式为y=kx+3,它经过点F(-
4 |
3 |
则-
4 |
3 |
解之,得k=
9 |
4 |
∴直线CM的解析式为y=
9 |
4 |
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1陈述句改反问句
- 2为什么是电池短路
- 3有含盐40%的盐水100克,倒出40克后加清水,再倒出50克后加满清水,盐水中含盐多少克
- 4The fish___(闻起来) something good.
- 5已知直线L的倾斜角为45°,与椭圆x²/2+y²=1交A、B两点,若|AB|=4/3,求直线L的方程.
- 6四位同学分别用同一把最小刻度为毫米的刻度尺,测量同一支铅笔的长度,记录的数据如下,其中错误的是( ) A.171.2mm B.1.712dm C.1.712×10-4km D.1.712m
- 7从“恩格尔系数”的内涵理解世界人口增长的区域类型
- 8(a²+2a)-2(a²+2a)-3= 因式分解
- 9已知方程x^2+mx-2=0的两根为x1,x2,若lx1-x2l=3,那么m=
- 10the chorus consists of 30 boys and 25 girls