当前位置: > 等边△ABC中,BO、CO分别平分∠ABC和∠ACB,BO、CO垂直平分线分别交BC于E、F.请问线段BE、FC是否相等?为什么?...
题目
等边△ABC中,BO、CO分别平分∠ABC和∠ACB,BO、CO垂直平分线分别交BC于E、F.请问线段BE、FC是否相等?为什么?

提问时间:2020-10-19

答案
BE=CF,理由是:连接OE,OF,∵DE垂直平分OB∴BE=OE(线段垂直平分线上的点到线段两端点距离相等),同理OF=CF,∴∠EBO=∠BOE,∠FCO=∠FOC,∵等边三角形ABC中,∴∠ABC=∠ACB=60°(等边三角形各角相等且为60°)...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.