当前位置: > 求函数y=xe^[(-1/4)*(x^2)]的单调区间、极值及其图形的拐点...
题目
求函数y=xe^[(-1/4)*(x^2)]的单调区间、极值及其图形的拐点
这道题我自己做了,得出的结论是
f'(x)=0时,x=±√2
(-∞,-√2),f'(x)<0单减
(-√2,√2)单增
(√2,+∞)单减
f''(x)=0时,x=0或x=6
(-∞,0)f''(x)>0,是凹的,f(-√2)即为最小值
(0,6)f''(x)0,是凹的
则x=0,x=6为拐点,x=0时,y=0,x=6时,y=6e^6
即函数的拐点为(0,0)(6,6e^6)
以上结果对吗

提问时间:2020-10-19

答案
y'=e^[(-1/4)*(x^2)]+x(-1/2)xe^[(-1/4)*(x^2)]=(1-x^2/2)e^[(-1/4)*(x^2)]=0可以得到x=正负sqar(2)y''=-xe^[(-1/4)*(x^2)]+(1-x^2/2)*(-1/2)xe^[(-1/4)*(x^2)]=0求拐点其他的 你应该可以搞定吧 这个也就求导 其...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.