当前位置: > 设复数z满足4z+2*z的共轭复数=3倍根号3+i,w=sina-icosa,求z的值和|z-w|的取值范围....
题目
设复数z满足4z+2*z的共轭复数=3倍根号3+i,w=sina-icosa,求z的值和|z-w|的取值范围.
要有具体过程·注明:a代表的是角度

提问时间:2020-10-19

答案
z=c+bi,
4(c+bi)+2(c-bi) = 6c+2bi=3*3^(1/2)+i,
c=3^(1/2)/2,b=1/2.
z = 3^(1/2)/2 + i/2.
z-w=3^(1/2)/2 + i/2 -sina+icosa = [3^(1/2)/2 -sina] + i[1/2 + cosa]
|z-w|^2 = [3^(1/2)/2 - sina]^2 + [1/2 + cosa]^2
= 3/4 -3^(1/2)sina + 1/4 + cosa + 1
= 2 + 2[cosa*1/2-sina*3^(1/2)/2]
= 2 + 2cos[a+PI/3]
0 <= |z-w|^2 = 2 + 2cos[a+PI/3] <= 4,
0 <= |z-w| <= 2.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.