当前位置: > 如图,等边△ABC中,点D在延长线上,CE平分∠ACD,且CE=BD.求证:△ADE是等边三角形...
题目
如图,等边△ABC中,点D在延长线上,CE平分∠ACD,且CE=BD.求证:△ADE是等边三角形

提问时间:2020-10-19

答案
证明:
很容易证明,虽然题中没有明确D的位置,可是根据题目的意思,D只能在BC的延长线上,而且可证,
因为CE平分∠ACD,
∴∠ACE=(1/2)*(180°-∠ACB)=60°=∠ACD,
又因为BD=CE,AB=AC,
∴根据三角形全等判定的SAS定理,得
△ABD≌△ACE,
∴AD=AE,∠BAD=∠CAE,
∴∠DAE
=∠CAE-∠CAD
=∠BAD-∠CAD
=∠BAC
=60°,
即AE=AD,且∠DAE=60°,
∴∠DAE=∠AED=∠ADE=60°,
∴AD=DE=AE,
∴△ADE是等边三角形,
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.