当前位置: > 已知函数f(x)=x的平方+ax+3-a,若x属于【-2,2】时,有f(x)≥2恒成立,求a的取值范围...
题目
已知函数f(x)=x的平方+ax+3-a,若x属于【-2,2】时,有f(x)≥2恒成立,求a的取值范围

提问时间:2020-10-18

答案
就是函数在给定区间内的最小值为非负.
若对称轴-a/2<-2,则函数在区间[-2,2]上单调增,最小值为f(-2)=4-2a+3-a>=0
解得:a>4时,a<=7/3,无解
若对称轴-a/2>2,则函数在区间[-2,2]上单调减,最小值为f(2)=4+2a+3-a>=0
解得:a<-4时,a>=-7,即:-7<=a<-4
若对称轴-2<=-a/2<=2,则函数在区间[-2,2]上先减后增,最小值为f(-a/2)=[4(3-a)-a^2]/4>=0
解得:-4<=a<=4时,-6<=a<=2,即-4<=a<=2
综合上面三种情况,得:-7<=a<=2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.