当前位置: > 一个自然数的3次方恰好有100个约数,那么这个自然数本身最少有几个约数?我的答案作了修改,不含有1与本身还是有解的.34个...
题目
一个自然数的3次方恰好有100个约数,那么这个自然数本身最少有几个约数?我的答案作了修改,不含有1与本身还是有解的.34个

提问时间:2020-10-18

答案
N=p1^n1*p2^n2*.pk^nk
N=p1^(3n1).p^k(3nk)
约数个数=(3n1+1)...(3nk+1)
100分成3n+1形式的因数乘积只有100,4x25,两种
因此有两种情况:
3n1+1=100,得:n1=33,此时N=p1^33,此时N有34个约数
3n1+1=4,3n2+1=25,得:n1=1,n2=8,此时N=p1*p2^8,此时N有2*9=18个约数.
因此最少有18个约数.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.