当前位置: > 已知数列{an}满足a1=1,a2=2,an+2=an+an+12,n∈N*. (1)令bn=an+1-an,证明:{bn}是等比数列; (2)求{an}的通项公式....
题目
已知数列{an}满足a1=1,a2=2,an+2=
a

提问时间:2020-10-18

答案
(1)证b1=a2-a1=1,
当n≥2时,bnan+1an
an−1+an
2
an=−
1
2
(anan−1)=−
1
2
bn−1,

所以{bn}是以1为首项,
1
2
为公比的等比数列.
(2)解由(1)知bnan+1an=(−
1
2
)n−1

当n≥2时,an=a1+(a2-a1)+(a3-a2)++(an-an-1)=1+1+(-
1
2
)+…+(−
1
2
)
n−2

=1+
1−(−
1
2
)
n−1
1−(−
1
2
)
=1+
2
3
[1−(−
1
2
)n−2]
=
5
3
2
3
(−
1
2
)n−1

当n=1时,
5
3
2
3
(−
1
2
)1−1=1=a1

所以an
5
3
2
3
(−
1
2
)n−1(n∈N*)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.