题目
已知函数f(x)=x²-2ax+5(a>1).
(1)若f(x)的定义域和值域均是[1,a],求实数a的值;
(2)若f(x)在[-∞,2]上是减函数,且对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,求实数a的取值范围.
(1)若f(x)的定义域和值域均是[1,a],求实数a的值;
(2)若f(x)在[-∞,2]上是减函数,且对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,求实数a的取值范围.
提问时间:2020-10-18
答案
(1)f(x)图形为抛物线,且对称轴为x=a,则(-∞,a]区间为单调递减
定义域为[1,a]时,x=1对应最大值f(1)=1-2a+5=6-2a
x=a对应最小值f(a)=a²-2a²+5=5-a²
由题意值域也是[1,a]
则5-a²=1且6-2a=a
则解得a=2
(2)f(x)在给定区间为减函数,结合(1)可知a≥2
在区间[1,a+1]内,x=a时取得最小值
若a≥2,则a-1≥1则x=1距离x=a更远,则[1,a+1]区间内最大值为x=1时取得
则|f(x1)-f(x2)|≤f(1)-f(a)
只要f(1)-f(a)≤4可保证任意x1,x2均使|f(x1)-f(x2)|≤4成立
f(1)=6-2a,f(a)=5-a²
则要求(6-2a)-(5-a²)≤4
解得-1≤a≤3
又a≥2
则a的范围是:2≤a≤3
定义域为[1,a]时,x=1对应最大值f(1)=1-2a+5=6-2a
x=a对应最小值f(a)=a²-2a²+5=5-a²
由题意值域也是[1,a]
则5-a²=1且6-2a=a
则解得a=2
(2)f(x)在给定区间为减函数,结合(1)可知a≥2
在区间[1,a+1]内,x=a时取得最小值
若a≥2,则a-1≥1则x=1距离x=a更远,则[1,a+1]区间内最大值为x=1时取得
则|f(x1)-f(x2)|≤f(1)-f(a)
只要f(1)-f(a)≤4可保证任意x1,x2均使|f(x1)-f(x2)|≤4成立
f(1)=6-2a,f(a)=5-a²
则要求(6-2a)-(5-a²)≤4
解得-1≤a≤3
又a≥2
则a的范围是:2≤a≤3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1冰屋、窑洞、西亚、东南亚 典型分布 民居与地理环境的关系
- 2设双曲线C:x2/2-y2=1的左右顶点分别为a1,a2,垂直于x轴的直线m与双曲线c交于不同的两点p,q,1.若直线m与x轴正半轴的交点为t,且A1P乘A2Q=1,求点t坐标
- 3对新能源谈谈你的想法
- 4真情的回报的名人名言卢梭的
- 5我不会骑自行车,请问可以去骑电动车吗?
- 6碳酸钠与二氧化碳和水反应的方程式
- 7Yang Ling is showing a map _ the town _ her friends.
- 8急求一篇有关于回忆的文章、
- 9(1+3/n)的n次方当n->无穷时极限
- 10if you like,just take it 回答应该选什么?