当前位置: > 如图所示:△ABC是等腰直角三角形,BC=AC,直角顶点C在x轴上,一锐角顶点B在y轴上 (1)如图1所示,若C的坐标是(2,0),点A的坐标是(-2,-2),求:点B的坐标; (2)如图2,若y轴恰...
题目
如图所示:△ABC是等腰直角三角形,BC=AC,直角顶点C在x轴上,一锐角顶点B在y轴上

(1)如图1所示,若C的坐标是(2,0),点A的坐标是(-2,-2),求:点B的坐标;
(2)如图2,若y轴恰好平分∠ABC,AC与y轴交于点D,过点A作AE⊥y轴于E,问BD与AE有怎样的数量关系,并说明理由;
(3)如图3角边BC在两坐标轴上滑动,使点A在第四象限内,过A点作AF⊥y轴于F,在滑动的过程中,两个结论①
CO-AF
OB
为定值;②
CO+AF
OB
为定值,只有一个结论成立,请你判断正确的结论加以证明,并求出定值.

提问时间:2020-10-18

答案
(1)过点B作BD⊥OD,

∵∠DAC+∠ACD=90°,∠ACD+∠BCD=90°,
∴∠BCD=∠DAC,
在△ADC和△COB中,
∠ADC=∠BOC=90°
∠DAC=∠BCD
AC=BC

∴△ADC≌△COB(AAS),
∴AD=OC,CD=OB,
∴点B坐标为(0,4);
(2)延长BC,AE交于点F,

∵AC=BC,AC⊥BC,
∴∠BAC=∠ABC=45°,
∵BD平分∠ABC,
∴∠COD=22.5°,∠DAE=90°-∠ABD-∠BAD=22.5°,
在△ACF和△BCD中,
∠DAE=∠COD
BC=AC
∠BCD=∠ACF=90°

∴△ACF≌△BCD(ASA),
∴AF=BD,
在△ABE和△FBE中,
∠ABE=∠FBE
BE=BE
∠AEB=∠FEB

∴△ABE≌△FBE(ASA),
∴AE=EF,
∴BD=2AE;
(3)作AE⊥OC,则AF=OE,

∵∠CBO+∠OBC=90°,∠OBC+∠ACO=90°,
∴∠ACO=∠CBO,
在△BCO和△ACE中,
∠BOC=∠AEC=90°
∠ACO=∠CBO
AC=BC

∴△BCO≌△ACE(AAS),
∴CE=OB,
∴OB+AF=OC.
CO-AF
OB
=1.
(1)过点A作AD⊥OC,可证△ADC≌△COB,根据全等三角形对应边相等即可解题;
(2)延长BC,AE交于点F,可证△ACF≌△BCD,可证△ABE≌△FBE,即可求得BD=2AE;
(3)作AE⊥OC,则AF=OE,可证△BCO≌△ACE,可得AF+OB=OC,即可解题.

全等三角形的判定与性质;坐标与图形性质.

本题考查了全等三角形的判定,考查了全等三角形的、对应边相等的性质,本题中每一问都找出全等三角形并证明其全等是解题的关键.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.