当前位置: > 高一数学:设函数y=f(x)是定义在R+上的减函数,并且满足f(xy)=f(x)+f(y),f(1/3)=1. 问题在下面...
题目
高一数学:设函数y=f(x)是定义在R+上的减函数,并且满足f(xy)=f(x)+f(y),f(1/3)=1. 问题在下面
1.求f(1)的值
2.如果f(x)+f(2-x)<2,求x的取值范围

提问时间:2020-10-18

答案
1.
f(xy)=f(x)+f(y),
令x=y=1,f(1)=f(1)+f(1),得f(1)=0
2.f(1/3*1/3)=f(1/9)=f(1/3)+f(1/3)=2
f(x)+f(2-x)<2
故f[x(2-x)]1/9
x^2-2x+1/9
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.