当前位置: > 设A是m*n阶矩阵,B为n*k阶矩阵,若AB=0,证明r(A)+r(B)...
题目
设A是m*n阶矩阵,B为n*k阶矩阵,若AB=0,证明r(A)+r(B)

提问时间:2020-10-18

答案
证明:
设B=(β1,β2,...,βs),则
AB=A(β1,β2,...,βs)=(Aβ1,Aβ2,...,Aβs)=0
∴Aβ(i)=0,(i=1,2,...,s)
即β1,β2,...,βs是线性方程组AX=0的解
又线性方程组AX=0的基础解系所含的向量个数是n-r(A)
∴r(B)=r(β1,β2,...,βs)≤n-r(A)
∴r(A)+r(B)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.