当前位置: > 已知矩阵A的特征值为1,3,2;求A^-1,I+A的特征值...
题目
已知矩阵A的特征值为1,3,2;求A^-1,I+A的特征值

提问时间:2020-10-18

答案
A^-1的特征值是1/1,1/3,1/2.
I+A的特征值是1+1,1+3,1+2.
将矩阵A代入一个多项式,得到一个新的矩阵B,即
B=f(A)=an*A^n+an-1*A^(n-1)+...+a1*A+a0*I
设A有特征值λ,那么B就有特征值f(λ),而且对应的特征向量不变.
这个结论很有用,严格的证明要用《矩阵论》.《线性代数》中好像也有证明,
比如:
设A的特征向量为α,有Aλ=λα
(A+I)α=λα+α=(λ+1)α
但是仔细推敲是不严格的.你就背下结论直接用吧,很有用的.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.