当前位置: > 怎样证明x^2+1在有理数域上不可约....
题目
怎样证明x^2+1在有理数域上不可约.

提问时间:2020-10-18

答案
法一:代数基本定理
x²+1=0在数域内正好有2个根
那么可以解也这两个根为 i,和-i
故x²+1=0除那两个之外再无别根
故无有理根.
故在Q上不可约.
方法二,由x²=-1无实根,所以无有理根.
所以在Q上不可约.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.