当前位置: > 已知fx对一切xy∈R都有fx+y=fx+fy求fx是奇函数...
题目
已知fx对一切xy∈R都有fx+y=fx+fy求fx是奇函数
xiexie

提问时间:2020-10-18

答案
证明:由于:f(x+y)=f(x)+f(y)则:令x=y=0则有:f(0+0)=f(0)+f(0)f(0)=2f(0)则:f(0)=0再令:y=-x则有:f[x+(-x)]=f(x)+f(-x)f(0)=f(x)+f(-x)由于:f(0)=0则:f(x)+f(-x)=0f(-x)=-f(x)则:f(x)是奇函数
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.