当前位置: > 如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到如图2所示的三棱锥A-BCF,其中BC=22. (1)...
题目
如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到如图2所示的三棱锥A-BCF,其中BC=
2
2


(1)证明:DE∥平面BCF;
(2)证明:CF⊥平面ABF;
(3)当AD=
2
3
时,求三棱锥F-DEG的体积VF-DEG

提问时间:2020-10-18

答案
(1)在等边三角形ABC中,AD=AE,∴
AD
DB
AE
EC
,在折叠后的三棱锥A-BCF中也成立,
∴DE∥BC.
又∵DE⊄平面BCF,BC⊂平面BCF,
∴DE∥平面BCF.
(2)在等边三角形ABC中,F是BC的中点,所以AF⊥BC,即AF⊥CF ①,且BF=CF=
1
2

∵在三棱锥A-BCF中,BC=
2
2
,∴BC2=BF2+CF2,∴CF⊥BF②.
又∵BF∩AF=F,∴CF⊥平面ABF.
(3)由(1)可知GE∥CF,结合(2)可得GE⊥平面DFG.
VF−DEGVE−DFG
1
3
1
2
•DG•FG•GE
=
1
3
1
2
1
3
•(
1
3
3
2
)•
1
3
3
324
(1)在等边三角形ABC中,由AD=AE,可得
AD
DB
AE
EC
,在折叠后的三棱锥A-BCF中也成立,故有DE∥BC,再根据直线和平面平行的判定定理证得DE∥平面BCF.
(2)由条件证得AF⊥CF ①,且BF=CF=
1
2
.在三棱锥A-BCF中,由BC=
2
2
,可得BC2=BF2+CF2,从而 CF⊥BF②,结合①②,证得CF⊥平面ABF.
(3)由(1)可知GE∥CF,结合(2)可得GE⊥平面DFG.再由 VF−DEGVE−DFG
1
3
1
2
•DG•FG•GE
,运算求得结果.

直线与平面平行的判定;棱柱、棱锥、棱台的体积;直线与平面垂直的判定.

本题主要考查直线和平面平行的判定定理、直线和平面垂直的判定的定理的应用,用等体积法求三棱锥的体积,属于中档题.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.