当前位置: > 在△ABC中,三个内角是A,B,C的对边分别是a,b,c,其中c=10,且cosA/cosB=b/a=4/3.(1)求证:△ABC是直角三角形;(2)设圆O过A,B,C三点,点P位于劣弧AC上,∠PA...
题目
在△ABC中,三个内角是A,B,C的对边分别是a,b,c,其中c=10,且
cosA
cosB
=
b
a
=
4
3

(1)求证:△ABC是直角三角形;
(2)设圆O过A,B,C三点,点P位于劣弧AC上,∠PAB=60°,求四边形ABCP的面积.

提问时间:2020-10-18

答案
作业帮 (1)证明:根据正弦定理得,
cosA
cosB
=
sinB
sinA

整理为:sinAcosA=sinBcosB,即sin2A=sin2B,
因为0<A<π,0<B<π,所以0<2A<2π,0<2B<2π,所以A=B,或者A+B=
π
2

由于
b
a
=
4
3
,所以A≠B,所以A+B=
π
2
,即C=
π
2

故△ABC是直角三角形.
(2)由(1)可得:a=6,b=8.
在Rt△ABC中,sin∠CAB=
BC
AB
=
3
5
,cos∠CAB=
4
5

sin∠PAC=sin(60°-∠CAB)
=sin60°cos∠CAB-cos60°sin∠CAB
=
3
2
×
4
5
-
1
2
×
3
5
=
1
10
(4
3
-3)

连接PB,在Rt△APB中,AP=AB•cos∠PAB=5.
所以四边形ABCP的面积
S四边形△ABCP=S△ABC+S△PAC
=
1
2
ab+
1
2
AP•AC•sin∠PAC

=24+
1
2
×5×8×
1
10
(4
3
-3)=18+8
3
(1)由题设条件
cosA
cosB
b
a
4
3
.利用正弦定理可得
cosA
cosB
sinB
sinA
.,整理得讨论知,A=B或者A+B=
π
2
.又
b
a
4
3
,所以A+B=
π
2

由此可以得出,△ABC是直角三角形;
(2)将四边形ABCP的面积表示成两个三角形S△ABC与S△PAC的和,S△ABC易求,S△PAC需求出线段PA的长度与sin∠PAC的值,利用三角形的面积公式求解即可.

正弦定理;圆內接多边形的性质与判定.

本题第一问考查正弦定理与分类讨论的思想,第二问是探究型题,需分部来求四边形的面积,化整为零,先求局部再求整体,方法较好.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.