当前位置: > 如图,在四边形ABCD中,AD∥BC,AE平分∠BAD交DC于点E,连接BE,且AE⊥BE,求证:AB=AD+BC....
题目
如图,在四边形ABCD中,AD∥BC,AE平分∠BAD交DC于点E,连接BE,且AE⊥BE,求证:AB=AD+BC.

提问时间:2020-10-17

答案
证明:如图,过点E作EF⊥AB于F,
∵AE平分∠BAD,
∴DE=EF,
在Rt△ADE和Rt△AFE中,
AE=AE
DE=EF

∴Rt△ADE≌Rt△AFE(HL),
∴∠AED=∠AEF,AD=AF,
∵AE⊥BE,
∴∠AEF+∠BEF=∠AED+∠BEC=90°,
∴∠BEC=∠BEF,
又∵EF⊥AB,CE⊥BC,
∴BC=BF,
∵AB=AF+BF,
∴AB=AD+BC.
过点E作EF⊥AB于F,根据角平分线上的点到角的两边距离相等可得DE=EF,然后利用“HL”证明Rt△ADE和Rt△AFE全等,根据全等三角形对应角相等可得∠AED=∠AEF,全等三角形对应边相等可得AD=AF,再根据等角的余角相等求出∠BEC=∠BEF,然后根据角平分线上的点到角的两边距离相等可得BC=BF,再利用AB=AF+BF等量代换即可得证.

A:角平分线的性质 B:全等三角形的判定与性质

本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记性质并作辅助线构造出全等三角形是解题的关键.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.