当前位置: > 已知函数f(x)=2asin(2x- π分之3)+b的定义域为{0,π分之2},函数的最大值为1 最小值为-5 求a和b的值...
题目
已知函数f(x)=2asin(2x- π分之3)+b的定义域为{0,π分之2},函数的最大值为1 最小值为-5 求a和b的值
因为x属于[0,π/2],则(2x-π/3)属于[-π/3,2π/3],为什么得出sin(2x-π/3)属于[-√3/2,1].

提问时间:2020-10-17

答案
∵x∈[0,π/2] ∴(2x-π/3)∈[-π/3,2π/3]
∴sin(2x-π/3)在x∈[0,π/2]时,是增函数 ∴sin(2x-π/3)∈[-√3/2,1]
当a>0时,f(x)∈[﹣√3a+b,2a+b]
∵函数的最大值为1 最小值为-5 ∴﹣√3a+b=1 2a+b=﹣5 ∴a=﹣6/(2+√3)<0
∴a<0 ∴f(x)∈[2a+b,﹣√3a+b] ∴﹣√3a+b=﹣5 2a+b=1
∴a=6(2-√3) b=12√3-23
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.