题目
在三角形ABC中,若a2=b(b+c),求证:A=2B
提问时间:2020-10-17
答案
因为 a^2=b(b+c),s (sinA)^2=(sinB)^2+sinBsin(A+B)
所以 (sinA+sinB)(sinA-sinB)=sinBsin(A+B)
所以 4sin[(A+B)/2]*cos[(A-B)/2]*cos[(A+B)/2]*sin[(A-B)/2]=sinBsin(A+B)
此处用到了和差化积的公式:
sinA+sinB=2sin[(A+B)/2]*cos[(A-B)/2]
sinA-sinB=2cos[(A+B)/2]*sin[(A-B)/2]
所以 sin(A+B)sin(A-B)=sinBsin(A+B)
所以 sin(A-B)=sinB
所以 A=2B
所以 (sinA+sinB)(sinA-sinB)=sinBsin(A+B)
所以 4sin[(A+B)/2]*cos[(A-B)/2]*cos[(A+B)/2]*sin[(A-B)/2]=sinBsin(A+B)
此处用到了和差化积的公式:
sinA+sinB=2sin[(A+B)/2]*cos[(A-B)/2]
sinA-sinB=2cos[(A+B)/2]*sin[(A-B)/2]
所以 sin(A+B)sin(A-B)=sinBsin(A+B)
所以 sin(A-B)=sinB
所以 A=2B
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1关于的 英语作文
- 2slim early sad little ill well pertty close much good far interesting generous many hard hot easy re
- 3找出句子中的错误并改正
- 4陋室铭仿写 不要恶高 自己想出来的 别抄袭
- 5问数学题,聪明人来
- 6in the last few years thousands of films 空格 all over the world 答案是have been made 但我觉得是
- 7Put with something else.猜一个以a开头的英文单词
- 8把一个底面周长为31.4分米的圆锥形木料沿底面直径竖直剖开,表面积增加30平方分米,圆锥体的体积是多少
- 9结合傅雷家书两则来谈谈什么样的心灵才称得上赤子之心
- 10加一个字母成为另一个单词 old-( ) now-( ) pen-( ) lay-( )
热门考点