当前位置: > 证明三角形三边高线交于一点...
题目
证明三角形三边高线交于一点

提问时间:2020-10-17

答案
假设BE垂直AC,CD垂直AB 因为BE、CD是高 所以∠BDC=∠BEC=90° 因为∠BOD=∠COE 所以△BOD∽△COE 所以BO/CO=DO/EO 所以BO/DO=CO/EO 又因为∠BOC=∠DOE 所以△BOC∽△DOE 所以∠DEB=∠DCB 又因为∠AEB=∠ODB=90°,∠ABE=∠OBD 所以△ABE∽△OBD 所以AB/OB=BE/BD 所以AB/BE=OB/BD 所以△BDE∽△BOA 所以∠DEB =∠BAO 又因为∠DEB=∠DCB 所以∠BAO=∠DCB 因为∠DCB+∠DBC=90° 所以∠BAO+∠DBC=90° 即∠BAF+∠ABF=90° 所以∠AFB=90° 所以AF⊥BC
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.