当前位置: > 已知函数fx=(2ax-x^2)e^ax 其中a为常数且a大于等于0 若函数fx在区间(根号2,2)上单调递减 求a的取值范围...
题目
已知函数fx=(2ax-x^2)e^ax 其中a为常数且a大于等于0 若函数fx在区间(根号2,2)上单调递减 求a的取值范围

提问时间:2020-10-17

答案
对函数fx求导,得到:(2ax-x^2)ae^ax +(2a-2x)e^ax =(2a^2×x-ax^2+2a-2x)e^ax
fx在区间(根号2,2)上单调递减,故(根号2,2)区间上有:
(2a^2×x-ax^2+2a-2x)e^ax
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.